Bonjour , je suis en terminale et j’aurais besoin d’aide pour une exercice s’il vous plaît. Déterminer le plus grand ensemble de définition possible de chacune
Mathématiques
sltdu63
Question
Bonjour , je suis en terminale et j’aurais besoin d’aide pour une exercice s’il vous plaît.
Déterminer le plus grand ensemble de définition possible de chacune des fonctions suivantes , puis calculer f’(x) :
a) f(x) = ln(ln2x)
b) f(x) = x^2 ln(e^x + 1)
Merci beaucoup de votre aide , ça serait super gentil !
Déterminer le plus grand ensemble de définition possible de chacune des fonctions suivantes , puis calculer f’(x) :
a) f(x) = ln(ln2x)
b) f(x) = x^2 ln(e^x + 1)
Merci beaucoup de votre aide , ça serait super gentil !
1 Réponse
-
1. Réponse clemou2004
Bonjour ,
a) POUR L’ENSEMBLE DE DÉFINITION
il faut que 2x > 0 soit x > 0
Et il faut que ln(2x) > 0 soit x > 1/2
Donc l’ensemble de définition est ]1/2 , + ∞[
POUR LA DÉRIVÉE
c’est ln(u) donc ça dérive en u’/u
Ici le u c’est ln(2x) donc u’ c’est 1/x
Donc f’(x) = 1/(xln(ln2x))
b) POUR L’ENSEMBLE DE DÉFINITION
Une seule contrainte : il faut que e^x + 1 > 0
Soit e^x > -1. Ceci est vrai pour n’importe quel réel
Donc l’ensemble de définition est R
POUR LA DÉRIVÉE
C’est de la forme u x v donc ça se dérive en u’v + uv’
Donc f’(x) = 2x * ln(e^x+1) + x^(2)*(e^x)/(e^x + 1)
Bonne soirée !