Bonjour, J'ai besoin d'aide pour un exercice de maths Dans un repère orthonormé de l'espace, on considère les points A(-1;1;0), B(1;1;-2) et C(3;1;-1). 1) Montr
Mathématiques
marie9876
Question
Bonjour,
J'ai besoin d'aide pour un exercice de maths
Dans un repère orthonormé de l'espace, on considère les points A(-1;1;0), B(1;1;-2) et C(3;1;-1).
1) Montrer que les points A, B et C définissent un plan.
2) Démontrer qu'il existe un unique point G de l'espace tel que GA+GB+GC=0
3)a) Vérifier que AG = 1/3AB et 1/3AC
b) Que peut on en déduire pour le point G ?
4) Soit C l'ensemble des points M de l'espace tels que : MA^2 + MB^2 +MC^2 = 13
a) en utilisant le point G dans l'égalité caractérisant l'ensemble C, démontrer que M appartient à C et que GM=1
b)En déduire l'ensemble C
J'ai réussit la question 1 où il suffit de montrer que les points ne sont pas colinéaires
J'aurais besoin d'aide pour la questions 2
J'ai réussit les questions 3)a) et b) que je compléterais avec la réponse à la question 2
Je ne comprends absolument pas le reste des questions
Merci d'avance pour votre aide
J'ai besoin d'aide pour un exercice de maths
Dans un repère orthonormé de l'espace, on considère les points A(-1;1;0), B(1;1;-2) et C(3;1;-1).
1) Montrer que les points A, B et C définissent un plan.
2) Démontrer qu'il existe un unique point G de l'espace tel que GA+GB+GC=0
3)a) Vérifier que AG = 1/3AB et 1/3AC
b) Que peut on en déduire pour le point G ?
4) Soit C l'ensemble des points M de l'espace tels que : MA^2 + MB^2 +MC^2 = 13
a) en utilisant le point G dans l'égalité caractérisant l'ensemble C, démontrer que M appartient à C et que GM=1
b)En déduire l'ensemble C
J'ai réussit la question 1 où il suffit de montrer que les points ne sont pas colinéaires
J'aurais besoin d'aide pour la questions 2
J'ai réussit les questions 3)a) et b) que je compléterais avec la réponse à la question 2
Je ne comprends absolument pas le reste des questions
Merci d'avance pour votre aide
1 Réponse
-
1. Réponse aminoucamara
Réponse:
montrer que les points A,B et C definissent le plan